Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 160: 100-124, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33497794

RESUMO

Present study addresses the challenge of incorporating hydrophilic streptomycin sulphate (STRS; log P -6.4) with high dose (1 g/day) into a lipid matrix of SLNs. Cold high-pressure homogenization technique used for SLN preparation achieved 30% drug loading and 51.17 ± 0.95% entrapment efficiency. Polyethylene glycol 600 as a supporting-surfactant assigned small size (218.1 ± 15.46 nm) and mucus-penetrating property. It was conceived to administer STRS-SLNs orally rather than intramuscularly. STRS-SLNs remained stable on incubation for varying times in SGF or SIF. STRS-SLNs were extensively characterised for microscopic (TEM and AFM), thermal (DSC), diffraction (XRD) and spectroscopic (NMR and FTIR) properties and showed zero-order controlled release. Enhanced (60 times) intracellular uptake was observed in THP-1 and Pgp expressing LoVo and DLD-1 cell lines, using fluorescein-SLNs. Presence of SLNs in LoVo cells was also revealed by TEM studies. STRS-SLNs showed 3 times reduction in MIC against Mycobacterium tuberculosis H37RV (256182) in comparison to free STRS. It also showed better activity against both M. bovis BCG and Mycobacterium tuberculosis H37RV (272994) in comparison to free STRS. Cytotoxicity and acute toxicity studies (OECD 425 guidelines) confirmed in vitro and in vivo safety of STRS-SLNs. Single-dose oral pharmacokinetic studies in rat plasma using validated LCMS/MS technique or the microbioassay showed significant oral absorption and bioavailability (160% - 710% increase than free drug).


Assuntos
Antituberculosos/administração & dosagem , Portadores de Fármacos/química , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Estreptomicina/administração & dosagem , Administração Oral , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/toxicidade , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Macrófagos/metabolismo , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas/química , Tamanho da Partícula , Ratos , Solubilidade , Estreptomicina/química , Estreptomicina/farmacocinética , Estreptomicina/toxicidade , Células THP-1 , Testes de Toxicidade Aguda
2.
J Med Microbiol ; 63(Pt 5): 627-641, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24568881

RESUMO

Immuno-PCR (PCR-amplified immunoassay; I-PCR) is a novel ultrasensitive method combining the versatility of ELISA with the sensitivity of nucleic acid amplification of PCR. The enormous exponential amplification power of PCR in an I-PCR assay leads to at least a 10(2)-10(4)-fold increase in sensitivity compared with an analogous ELISA. I-PCR has been used to detect many biological molecules such as proto-oncogenes, toxins, cytokines, hormones, and biomarkers for autoimmune and Alzheimer's diseases, as well as microbial antigens and antibodies, and it can be adapted as a novel diagnostic tool for various infectious and non-infectious diseases. Quantitative real-time I-PCR has the potential to become the most analytically sensitive method for the detection of proteins. The sensitivity and specificity of a real-time I-PCR assay can be enhanced further with the use of magnetic beads and nanoparticles. This review is primarily focused on the detection of potential viral, bacterial and parasitic antigens by I-PCR assay, thus enabling their application for immunological research and for early diagnosis of infectious diseases.


Assuntos
Antígenos/análise , Técnicas de Laboratório Clínico/métodos , Doenças Transmissíveis/diagnóstico , Testes Diagnósticos de Rotina/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Antígenos/genética , Antígenos/imunologia , Pesquisa Biomédica/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Sensibilidade e Especificidade
3.
J Cell Sci ; 126(Pt 14): 3043-54, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23687375

RESUMO

Nanoparticles (NPs) are increasingly used as biodegradable vehicles to selectively deliver therapeutic agents such as drugs or antigens to cells. The most widely used vehicle for this purpose is based on copolymers of lactic acid and glycolic acid (PLGA) and has been extensively used in experiments aimed at delivering antibiotics against Mycobacterium tuberculosis in animal models of tuberculosis. Here, we describe fabrication of PLGA NPs containing either a high concentration of rifampicin or detectable levels of the green fluorescent dye, coumarin-6. Our goal here was twofold: first to resolve the controversial issue of whether, after phagocytic uptake, PLGA NPs remain membrane-bound or whether they escape into the cytoplasm, as has been widely claimed. Second, we sought to make NPs that enclosed sufficient rifampicin to efficiently clear macrophages of infection with Mycobacterium bovis BCG. Using fluorescence microscopy and immuno-electron microscopy, in combination with markers for lysosomes, we show that BCG bacteria, as expected, localized to early phagosomes, but that at least 90% of PLGA particles were targeted to, and remained in, low pH, hydrolase-rich phago-lysosomes. Our data collectively argue that PLGA NPs remain membrane-enclosed in macrophages for at least 13 days and degrade slowly. Importantly, provided that the NPs are fabricated with sufficient antibiotic, one dose given after infection is sufficient to efficiently clear the BCG infection after 9-12 days of treatment, as shown by estimates of the number of bacterial colonies in vitro.


Assuntos
Antibióticos Antituberculose/administração & dosagem , Portadores de Fármacos/química , Ácido Láctico , Macrófagos/microbiologia , Mycobacterium bovis/efeitos dos fármacos , Nanopartículas/química , Ácido Poliglicólico , Rifampina/administração & dosagem , Animais , Linhagem Celular , Membrana Celular/metabolismo , Contagem de Colônia Microbiana , Feminino , Masculino , Camundongos , Fagossomos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
FEMS Immunol Med Microbiol ; 66(1): 20-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22574812

RESUMO

During the last two decades, the resurgence of tuberculosis (TB) has been documented in both developed and developing nations, and much of this increase in TB burden coincided with human immunodeficiency virus (HIV) epidemics. Since then, the disease pattern has changed with a higher incidence of extrapulmonary tuberculosis (EPTB) as well as disseminated TB. EPTB cases include TB lymphadenitis, pleural TB, TB meningitis, osteoarticular TB, genitourinary TB, abdominal TB, cutaneous TB, ocular TB, TB pericarditis and breast TB, although any organ can be involved. Diagnosis of EPTB can be baffling, compelling a high index of suspicion owing to paucibacillary load in the biological specimens. A negative smear for acid-fast bacilli, lack of granulomas on histopathology and failure to culture Mycobacterium tuberculosis do not exclude the diagnosis of EPTB. Novel diagnostic modalities such as nucleic acid amplification (NAA) can be useful in varied forms of EPTB. This review is primarily focused on the diagnosis of several clinical forms of EPTB by polymerase chain reaction (PCR) using different gene targets.


Assuntos
Técnicas Bacteriológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Tuberculose/diagnóstico , Humanos , Mycobacterium tuberculosis/genética
5.
Mol Cell Biochem ; 308(1-2): 237-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18008148

RESUMO

cAMP response element binding protein (CREB) belongs to ATF/CREB family of transcription factors, which are bonafide targets of cAMP-PKA signalling pathway in mammalian cells. CREB is known to regulate the genes involved in transcription, cell cycle, cell survival, neurotransmitter, growth factors and immune regulation. But there is no evidence of presence of ATF/CREB family members in Candida albicans. In the present study, CREB like transcription factor has been identified and purified in C. albicans. The putative CREB was observed to have different molecular mass (47 kDa) as compared to its mammalian counterpart (43 kDa). Both forms of CREB (CREB and phosphorylated CREB) were detected in C. albicans and phosphorylation of CREB was found to be a function of cAMP levels and protein kinase A activity within this organism. CREB protein was purified by sequence-specific CRE-DNA affinity chromatography. Purified CREB exhibited characteristic CRE binding activity as revealed by electrophoretic mobility shift assay and gave reactivity with CREB antibodies. CREB protein was phosphorylated by purified catalytic subunit of PKA under in vitro conditions. To the best of our knowledge, this study reports for the first time identification of CREB like protein as an important component of cAMP signalling pathway in C. albicans.


Assuntos
Candida albicans/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Domínio Catalítico , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos
6.
Mol Cell Biochem ; 304(1-2): 331-41, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17557192

RESUMO

We demonstrate here the regulatory role of cAMP in cell cycle of Candida albicans. cAMP was found to be a positive signal for growth and morphogenesis. Phosphodiesterase inhibitor aminophylline exhibited significant effects, i.e., increased growth, as well as induced morphogenesis. Atropine and trifluoperazine negatively regulated (inhibited) growth and did not induce morphogenesis. These changes were attributed to increase in cAMP levels and protein kinase A (PKA) activity in presence of aminophylline, while reduction was observed in atropine and trifluoperazine (TFP) grown cells. Alteration in cAMP signaling pathway affected the cell cycle progression in Candida albicans. Increased cAMP levels in aminophylline grown cells reduced the duration of cell cycle by inciting the cell cycle-specific expression of G1 cyclins (CLN1 and CLN2). However atropine and trifluoperazine delayed the expression of G1 cyclins and hence prolonged the cell cycle. Implication of cAMP signaling pathway in both the cell cycle and morphogenesis further opened the channels to explore the potential of this pathway to serve as a target for development of new antifungal drugs.


Assuntos
Candida albicans/citologia , Ciclo Celular , Proliferação de Células , AMP Cíclico/fisiologia , Aminofilina/farmacologia , Atropina/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Candida albicans/fisiologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Transdução de Sinais/fisiologia , Trifluoperazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA